The numerical solution by the collocation method of strongly singular integral equations arising from the edge crack in an infinite strip
نویسندگان
چکیده
In this paper we analyze the numerical solution by a collocation method of a hypersingular integral equation resulting from the boundary value problem related to an infinite strip containing an edge crack perpendicular to its boundaries. Moreover, we show convergence results as well as numerical tests in a case of interest in fracture mechanics.
منابع مشابه
Multiple moving cracks in an orthotropic strip sandwiched between two piezoelectric layers
In this paper, the solution of a moving Volterra-type screw dislocation in an orthotropic layer, bonded between two piezoelectric layers is obtained using complex Fourier transform. The dislocation solution is then employed as strain nuclei to derive singular integral equations for a medium weakened by multiple moving cracks. These equations, which are classified as, Cauchy singular equations, ...
متن کاملSolvability of infinite system of nonlinear singular integral equations in the C(Itimes I, c) space and modified semi-analytic method to find a closed-form of solution
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملConvergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کامل